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Abstract. We introduce a very simple but efficient idea for branch and bound (B&B) algorithms
in global optimization (GO). As input for our generic algorithm, we need an upper bound algorithm
for the GO maximization problem and a branching rule. The latter reduces the problem into several
smaller subproblems of the same type. The new B&B approach delivers one global optimizer or,
if stopped before finished, improved upper and lower bounds for the problem. Its main difference
to commonly used B&B techniques is its ability to approximate the problem from above and from
below while traversing the problem tree. It needs no supplementary information about the system
optimized and does not consume more time than classical B&B techniques. Experimental results
with the maximum clique problem illustrate the benefit of this new method.
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1. Introduction and Definitions

A general global optimization (GO) problem is of the following form:

f (x) → max!
x ∈ M

(1)

where f is a real-valued function in x, a vector which lies in the feasible set M.
We let the dimension of a problem be the dimension of the vector x. Our in-

tention is to optimize globally, i.e. we are looking for a feasible vector x̂ such that
f (x̂) � f (x) for all x ∈ M. Note that x̂ does not have to be unique. Already in very
simple cases there may exist exponentially many (in the dimension of the problem)
global optimizers. We refer, e.g., to Moon/Mosers’s classical result on cliques
[18] for discrete GO problems, which forms a lower bound for possible global
optimizers in quadratic problems (see, e.g., [8]) as an example for continuous GO
problems. In this article we are only interested in one global optimizer.

Throughout the paper we assume that the following items are given:
1. Objective function: the function f of (1).
2. Feasible set: the feasible set M of (1) and methods for extracting points out

of it and its subsets generated throughout the algorithm. The latter assumption
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is necessary only, whenever the optimizer itself is required as well and not the
optimal value only.

3. Upper bounds: an upper bound value UB depending on (1), which guarantees
that UB = UBf,M � f (x) for all x ∈ M.

4. Branching rule: a rule which strictly decomposes a problem p = (f,M) into
i “smaller” subproblems p1, . . . , pi . In this context, smaller means either a
strict smaller problem dimension or a strict smaller feasible set (i.e. Mi ⊂ M).
In both cases the branching rule must guarantee that the global solution of the
problem can be found in at least one of the generated subproblems. Reduc-
tion by dimension is more often used for discrete problem instances whereas
partitioning the feasible set is more commonly used for continuous ones.

5. A selection rule: a rule which decides which constructed subproblem should
be explored next. This rule can be a very simple one (depth-first-search or
breadth-first-search) if there is little knowledge about the problem itself or it
can be a more sophisticated heuristic depending on known structural patterns
of the problem.

The best-bound-rule is another selection rule which should be mentioned here. This
rule chooses that branch of the tree to be the next one which has the largest upper
bound (when maximizing). This selection rule has an important theoretical back-
ground because it is a sufficient condition for the convergence of a B&Balgorithm
[15]. In practice, however, this rule has two major disadvantages. The first one
is, that for complex large problems as for example discussed in this article, the
list, which has to remember the nodes of the tree, may grow exponentially in the
number of iterations. As a consequence the memory is flooded and the algorithm
stops. This is the reason why in practice the depth-first-search rule is found most
commonly, because it does not need to maintain a list (except for the recursive
decent in an algorithm). Therefore it is easy to implement and it consumes little
resources. The second drawback is, that this rule is not able to support possible
structures of the problem (heuristics) because it always chooses that problem as
the next one with the highest bound. The presented algorithm here is a mixture of
these two approaches (best-bound and depth-first-search) and it allows heuristics
to be implemented as well. Please see Dür & Stix [11] who discuss this issue and
introduce new possible selection rules with probabilistic elements. They discuss
chances and drawbacks of different rules as well.

Note that the upper bounding algorithm need not necessarily be a very good one
because our algorithm improves it during calculations. A nice trade-off, however,
between the time needed to calculate UB and the quality of UB is assumed.

The required items listed above are quite natural for any B&B algorithm. In
Section 2 such a classical B&B approach used for GO is described. In Sec-
tion 3 we introduce a target, a value which should be reached at some x ∈ M.
If this is not possible, then target acts as a new upper bound for the problem.
The improvements of this target-oriented B&B method are that the maximization
problem is approximated not only from below by new better maximizers in M
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but also approximated from above by shrinking the upper bound. Therefore, this
algorithm delivers also acceptable results even if the problem is too complex and
the rendering process must be terminated before finishing. This is not unlikely for
GO problems because already simple discrete problems like the maximum clique
problem or continuous problems like standard quadratic optimization are known
to be NP-hard to solve (see, e.g., [3, 12]). In addition, a lot of problems require
the calculation of fewer subproblems using our target-oriented B&B algorithm.
This will be shown in Section 4. The basic idea of this approach is illustrated in
Section 5 with a small example. Section 6 ends the paper with experimental results
on the maximum clique problem, a discrete optimization problem.

2. Classical B&B Methods

B&B methods are well known for a long time and often used in various field
of continuous and discrete application domains. Horst & Tuy [15] describe the
B&B method for continuous global optimization and criteria of convergence are
developed which are necessary for infinite B&B procedures. A more compact
overview for continuous problems can also be found in [14] or [13] with a lot
of references within. They focus on the partition of the feasible set, whereas the
reduction in the dimension of the problem is more commonly applied to discrete
GO problems (see, e.g., [9, 19] or [22]) for a more implementation oriented point of
view. Due to the finiteness of the feasible sets, discrete GO problems need no theory
of convergence criteria. Continuous domain problems, however, can be as well
reduced in subproblems by reducing its dimension as for example it is achieved for
standard quadratic problems in [7]. Other recent works like [10, 16] concentrate on
specific problem classes and their structural aspects. These are used to implement
better selection heuristics in order to improve the efficiency of their algorithms
compared with simple “black box” B&B approaches. In principle, however, a
classical B&B approach as described below is used. It requires the inputs as we
described already in Section 1 and the algorithm’s outline looks like this:

Algorithm 1:

Input: The problem p = (f,M).
A desired ε-precision.

Initialize: Set problem list pl = {p}.
Set as first maximizer any x̂ ∈ M.

1. Use the selection rule to remove the next problem p ∈ pl.

2. Use the branching rule to construct new subproblems p1, . . . , pi out of p.

3. For each pi do
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(a) Calculate a lower bound li for pi (e.g. by evaluating any feasible point in
Mpi

).
(b) If (li > f (x̂)) then set x̂ = x such that x ∈ M, f (x) = li .
(c) Calculate an upper bound ui for pi .
(d) If (ui − li > ε and ui > f (x̂)) then set pl = pl ∪ pi .

4. Repeat from step 1 if pl 
= φ.

Output: x̂ is one global maximizer of p.

Algorithm 1 is well known and shortly summarized in words below. It starts with
the first (main) problem together with a desired ε-precision as input. It chooses any
x̂ ∈ M as candidate for the global maximizer. In step 1 the next subproblem is
removed according to some selection rule as discussed before. In this article we do
not care about this selection rule and assume it to be given. In order to converge
to a global solution, however, for continuous B&B problems some additional re-
quirements might be needed as discussed in the convergence section below. Step 2
decomposes the problem using the branching rule into “smaller” instances. Step 3
iterates through these newly generated subproblems and does the following: (a) it
calculates a lower bound for the subproblem (e.g., through evaluation of a feasible
point), (b) it updates the best solution x̂ if necessary, (c) it calculates an upper
bound for the subproblem and (d) it decides whether it is necessary to explore pi

further (bounding step). This is done (i) by testing if the desired precision is already
reached and (ii) by testing whether the problem pi is efficient by comparing ui

with f (x̂). After termination of Algorithm 1, x̂ is one global maximizer within an
ε-precision. Its optimal value is f (x̂).

We can improve the initialization step as well as step (3a) by using not just any
vector x̂ but a local optimizer of the respective problem, if it can easily be obtained.

2.1. CONVERGENCE

For discrete problems, ε can be set to zero and Algorithm 1 is finite because the
branching rule guarantees a strict decomposition of the problems and thus the
B&B tree is finite. For continuous problems some additional convergence criteria
must be assumed as discussed in [15].

To summarize these it is required from the bounding operation to be consistent.
This means that any infinitely decreasing sequence of successive refined partitions
Mq on M satisfies:

lim
q→∞(lq − u(Mq)) = 0, (2)

where lq is the current best lower bound and u(Mq) is an upper bound for the
problem (f,Mq). It is additionally required for consistency, that each problem
being of interest can be refined further at each step.
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Figure 1. Continuous global optimization example.

With this consistency condition and an ε > 0, Algorithm 1 is finite. This is
because of (2), the required precision of step (3d) is achieved after finite many
steps and therefore the B&B procedure is finite.

For ε = 0 the selection rule has to be additionally bound improving. It must be
ensured that the problem with the highest upper bound is refined infinitely often. If
this is assured together with the consistency condition, then Algorithm 1 converges
to the global solution. We refer to Horst & Tuy [15] for detailed discussion and
proofs.

Note that we have distinguished three cases, where the discrete one together
with any case with ε > 0 is finite whenever the consistency condition holds. This
condition can always be assumed for discrete problems, because at some level of
decomposition the problems become trivial and hence upper and lower bounds
coincide. The continuous case with full precision (ε = 0) additionally requires the
bound improving property for the selection rule and only convergence to the global
solution can be guaranteed. Thus it can imply an infinite B&B procedure.

2.2. EXAMPLES FOR BRANCHING

The following two examples should illustrate the algorithm with two different
branching rules. Figure 1 shows a simple one-dimensional function. Here the bran-
ching rule restricts the feasible region (interval) further. The lower bound is simply
the higher function value at the boundaries of an interval. The upper bound is
derived from the function though the details are not important here. We can see that
partitioning interval (1) further is not efficient because its upper bound is lower than
the lower bound of interval (3) which is the best solution up to that point. Therefore
interval (1) can be discarded and only the remaining two intervals are subdivided
again by the branching rule. A more realistic but not so illustrative continuous
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Figure 2. Discrete global optimization example.

optimization problem, namely the standard quadratic problem, is discussed in the
next section.

The second example is taken out of a discrete optimization domain. It is a well
known problem in graph theory. We focus on undirected simple graphs, i.e., edges
have no orientation and neither parallel edges nor loops are allowed (see Figure 2).
A clique is a complete induced subgraph, i.e., a subset of nodes where all nodes are
pairwise connected (i.e., {1, 2, 3} is a clique). Searching for a clique with maximum
cardinality is called the maximum clique problem (MCP). In our illustration, the
nodes {1, 4, 6, 7} form such a maximum clique. Many problems can be expressed
in terms of the MCP and it is known to be NP-complete. For more detail about the
MCP and its applications see the survey on MCP [5]. Obviously a branching rule
for this problem should reduce the dimension of the problem instead of shrinking
the feasible set. One idea as described in [1] is that a node can only form a max-
imum clique with its adjacent nodes. So in our example node 1 can only form a
maximum clique with nodes {2, 3, 4, 5, 6, 7}. Therefore it is enough to search for
the maximum clique in this new smaller problem and re-connect the solution to
node 1 afterwards.

An example where a continuous optimization problem is decomposed by di-
mension and not through partitioning the feasible region can be found in [7]. This
problem is connected to both, the MCP and standard quadratic optimization.

The given examples should serve only to motivate the idea of branching and are
not further exploited here. In Section 6, however, we present promising results of
experiments with the MCP and this new B&B algorithm.

3. Introducing a Target

The improvement of the generic B&B algorithm presented in Section 2 for op-
timizing the problem p = (f,M) is the introduction of a target. A target is a
value which should be reached at least by a vector x ∈ M, i.e., f (x) � target

should hold. Of course if target is chosen too large, e.g., target > UBp, then
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f (x) � target can never be satisfied. On the other hand if target is chosen too
small, e.g., target = f (y) = LBp (for any y ∈ M), there is no challenge finding
that particular x (simply choose x = y). If the target is chosen, however, to lie
between LBp and UBp, e.g., target = (LBp + UBp)/2, it is unclear whether
there is an x ∈ M such that f (x) � target . If such a vector x can be found, we
have a new lower bound: LBp = f (x). If we fail finding such a vector x then a new
upper bound is found: UBp = target . In both cases the estimation of the global
maximum of p is improved.

3.1. THE ALGORITHM

Before going into more detail we will show how this target-oriented B&B method
works and we will explain it afterwards.

Algorithm 2:

Input: The problem p = (f,M).
A desired ε-precision.

Initialize: Set problem list pl = {p}.
Set remember list rl = φ.
Set as first maximizer any x̂ ∈ Mp.
Calculate the global upper bound UBg of the main problem p.
Set target = (f (x̂) + UBg)/2.

1. Use the selection rule to remove the next problem p ∈ pl.
2. Use the branching rule to construct new subproblems p1, . . . , pi out of p.
3. For each pi do

(a) Calculate a lower bound li for pi (e.g. by evaluating any feasible point in
Mpi

).
(b) If (li > f (x̂)) then set x̂ = x, for f (x) = li and set target = (f (x̂) + UBg)/2

if (f (x̂) � target).
(c) Calculate an upper bound ui for pi .
(d) If (ui − li > ε) then

If (ui � target) then
set pl = pl ∪ pi .

else If (ui � f (x̂)) then
set rl = rl ∪ pi .

4. Repeat from step 1 if pl 
= φ.
5. Set pl = rl, UBg = target , target = (f (x̂) + UBg)/2.
6. If (UBg − f (x̂) > ε and pl 
= φ) repeat from step 1.

Output: x̂ is one global maximizer of p.
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We will call the completion of the inner loop (steps 1–4) a run because it is
structurally similar with one “run” through Algorithm 1. Thus step 6 can force the
algorithm to re-run from step 1.

LEMMA 1. With the assumptions made in Section 1, and the additional require-
ments for continuous problems as discussed in Section 2.1, Algorithm 2
1. is finite for discrete problems and continuous problems having ε > 0.
2. converges for continuous problems having ε = 0.

Proof. Ad 1). For these problems the inner loop (steps 1–4) constructs in step
3d) only finite many problems for the problem list pl as well as for the remember
list rl thus the inner loop is finite. Note that for continuous problems, the bounding
processes is required to be consistent (Section 2.1). The outer loop (step 1 to 6)
is finite because in step 5 the gap δ := target − f (x̂) is halved. f (x̂) is mono-
tonic increasing which can only decrease δ. If the gap becomes negative (step
3b), it is reset to at least one halve of the previous gap and so on. After finite
many re-runs (step 6) the ε-precision is reached. The algorithm requires at most
log2((UBf − f (x))/ε) re-runs of the outer loop. Ad 2). For these problems the
selection rule is additionally required to be bound improving (Section 2.1). This
is possible, because the problem with the highest upper bound is always in the
problem list pl (step 3d), which enables the selection rule to refine this problem
infinitely often. Thus convergence can be guaranteed. �
LEMMA 2. Increasing the target variable (i.e., the threshold for the bounding
process) during runtime (step 1), leaves the system consistent, meaning that all
branches rejected earlier would be rejected with this new target value as well.

Proof. Branches have been rejected because the upper bound of that branch
was smaller than target at that time. Increasing the target variable maintains this
order. �
LEMMA 3. The variable target forms an upper bound of the main problem once
all nodes in pl are visited (after step 4).

Proof. All branches with upper bounds smaller than target are discarded or
put in rl. Because of Lemma 2, this rejection holds even if target is increased
in step 3b. All other branches are explored further until none has an upper bound
exceeding target , which proves target to be the new upper bound. �
THEOREM 4. Algorithm 2 delivers the global optimum together with one optim-
izer of problem (1) within precision ε with assumptions made in Section 1 and
requirements discussed in Section 2.1 in finite time or at least converges to it for
ε = 0.

Proof. Lemma 1 covers the finite and convergence property. It finds the global
optimum because of the breaking condition in step 6 and by Lemma 3. �
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Here follows how Algorithm 2 works. Algorithm 2 is very similar to Algorithm
1 except for minor changes. The most salient ones are in steps 3d and steps 5–6.
In step 3d, besides precision, successive subproblems are only investigated further
if their upper bound is not smaller than target (instead of f (x̂) as in Algorithm
1). This would imply that we have already found an optimizer x̃ where f (x̃) =
target . Therefore all branches where the upper bound can not cope with these
“harder” requirements are cut back. Consequently, under normal conditions, much
fewer subproblems are calculated during recursion. In step 5, by Lemma 3, the
newly gained information is stored (UBg) and the target value is re-initialized.
Because the target was set so high (there never was such an x̃ as implied before),
we might have discarded efficient sub problems. Therefore we have to look at these
remembered problems in rl (pl = rl) with the newly gained information (step 6).
If on the other hand UBg − f (x̂) � ε, we found the global maximizer to be x̂.

We should examine step 2b as well where the statement target = (f (x̂)+
UBg)/2 carries over dynamically the idea of the target once there is an x̂ with
f (x̂) � target . Again the goal is set higher than necessary. Because target is
only monotonically increasing there is no problem of inconsistency by changing
the target value at run time as we showed in Lemma 2.

3.2. A CONTINUOUS EXAMPLE

The standard quadratic problem (StQP) was mentioned already several times be-
fore. It is the optimization of a quadratic form over the standard simplex, i.e.

xtQx → max!
x ∈ �n,

(3)

where �n = {x : xi > 0, i = 1, . . . , n,
∑n

i=1 xi = 1} is the standard simplex and n

the dimension of the problem. Any quadratic optimization problem can be solved
by solving some StQPs. They are very commonly used. This is not at least because
of the fact that many combinatorial problems can be reduced to StQPs. This offers
the advantage to solve discrete problems with discrete and continuous optimization
tools. Please see Bomze [3] for a discussion of these problems.

Besides the function and the feasible set given in (3) an upper bound, a branch-
ing rule and a selection rule are required as input. Bomze discusses in [4] all these
aspects for StQPs. Some of them are mentioned here. The upper bound can be
achieved, i.e., by d.c. decomposition where the quadratic form Q = Q+ +Q− con-
sisting of a convex (Q+) and concave (Q−) part is represented as the difference of
two convex functions Q = Q+ − (−Q−). With this decomposition an upper bound
can be achieved by maximizing Q+ which is a convex maximization problem and
minimizing −Q− which is concave maximization problem. Both problems are well
known and discussed, e.g., in [4, 14, 15]. The branching process can be done
by partitioning the feasible set via simplicial decomposition [14, 15] or through
decomposition by dimension as described, e.g., in [4, 7]. As a local optimization
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procedure the replicator dynamic, a robust dynamical system, is suggested, which
delivers good local optimizers within reasonable time [6, 7, 20]. With these inputs,
which are required by the classical B&B algorithm as well, the target-oriented
B&B algorithm can be used.

4. The Runtime Complexity of the New Approach

It is hard to compute different B&B systems among each other theoretically, be-
cause they are highly dependent on problem instances. There are easy ones and
there are hard ones for almost every kind of algorithm (they can be constructed).
In our experiments we observed, however, high gains in performance and quality.
The latter one is given through the improvement property of the upper bounds and
was discussed in the previous section. The improvement in performance can be
explained as follows.

4.1. COMPARISON OF THE TWO ALGORITHMS

In the previous section it may appear that the number of re-runs (step 6) of Al-
gorithm 2 serve to lengthen calculation time when compared to the classical B&B
Algorithm 1. This can be negated for almost all the time, for problem instances
being of interest.

Suppose that the whole problem tree were given in advance. This would be the
same tree independently of the working algorithm because we are using the same
branching rule. Now color only those nodes of the tree which the classical B&B
algorithm will visit, depending on its bounding capabilities (i.e., never visit nodes
(and sub-nodes) where the upper bound of this node is smaller than my current
best f (x̂)). It should be clear also, that none of the discarded nodes will be visited
by the target-oriented B&B algorithm since it has an even more rigorous cutting
rule (i.e., target is never smaller than f (x̂)). So at most all colored nodes of the
problem tree will be searched by the new algorithm. It is, however, rather unlikely
that it will render all of those, because due to its high target value, the algorithm
“forces” the improvements of f (x̂) to be rather large. This can be thought of as
the target-oriented B&B algorithm first searches some of the colored nodes fast
and rough in order to find a very large improvement. Should it fail, it searches
then some of the remaining colored nodes, refining its precision with each re-run.
In the worst case scenario, it would search all of the colored nodes to find the
global optimum like the classical B&B algorithm does. Because the coloring is a
dynamical process and highly depends on the problem itself the arguments above
hold only most of the time.

It could be argued that the order of the colored visited nodes differs between
these two algorithms. Therefore it might happen that the classical B&B method
finds the real global optimizer x̂ very soon and therefore renders the rest of the
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tree, which would only be necessary to prove that x̂ is the global maximizer, in the
most optimal way. This can happen though it is very unlikely given the complex
global optimization problems being of interest. This is because finding the global
optimizer very early would imply that we need the B&B algorithm almost only
for validation whether a (local) optimum f (x̂) found at the beginning is already the
global one. It was seen in experiments with a stochastic B&B problem [21] that
whenever the problem was structured that the global optimizer was found easy and
fast, the two algorithms almost performed the same. For harder problems, where
the global optimizer could not been extracted so easily and fast and was “hidden”
behind smaller inefficient local solutions, the target-oriented approach always was
faster, at least by 30%. Even better results can be found in Section 6.

Target-oriented B&B does not imply any selection rule. Thus the selection rule
used for the classical B&B approach can be used as well for the target-oriented
B&B algorithm. This new approach clusters the problem tree in much larger seg-
ments. Within these the same selection rules can be applied yielding the same effect
on its assumed gains. This makes this approach very interesting because it can be
simply applied without further knowledge of the problems.

4.2. BETTER RESULTS DURING RUNTIME

In many problems of global optimization, the problem tree is so huge that it can
never be rendered in a reasonable time. Such NP-complete problems appear very
soon and some of them are too hard to solve with the current computer power and
state of research. We will show some of these hard problems in Section 6 as well.
Such problems will always exist as long as P 
= NP . For these problems the target-
oriented B&B algorithm can also support our effort in finding the global optimum
better than the classical one. Algorithm 2 improves the gap between upper bound
for the problem and f (x̂) after each re-run in a geometric way. Because the number
of nodes rendered in the first run are much fewer compared to those of the classical
B&B method, it is much more likely that Algorithm 2 succeeds in finishing its first
run. At this point we have at least an improved upper bound and very likely also
an improved lower bound. Then the first re-run starts (step 6) to refine our results.
If it also succeeds in finishing its task again a better upper bound is achieved. With
each re-run the number of problems to be searched will increase and at some re-run
level it might again be not possible to finish all the problems of that particular tree
within reasonable time. Until then, however, we have improved upper and lower
bounds.

A problem can be so complex that even the first run of the target-oriented B&B
approach does not succeed. In these cases we can attempt to gain more information
during runtime with a small meta-programm as shown below. We will set T , the
maximum amount of time, which we are willing to spend in solving a problem.
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Algorithm 3:

Input: Problem p = (f,M).
precision ε.
Maximum time T .

Initialize: Initialize Algorithm 2.
Set t=T / log2((UBg − f (x̂))/ε).

1. Start with step 1 of Algorithm 2 until step 5 (without re-runs).
2. If it is not finished with this after time t , STOP it, keep the best lower bound x̂

and set new target = (target + UBg)/2. If it succeeds, however, set UBg =
target as the new upper bound for the problem.

3. Repeat from step 1 if time T is not exceeded.

Output: x̂ is best maximizer and UBf is best upper bound for p.

The algorithm above is just a simple outline and should provide the basic idea.
We know that we have at most log2((UBf − f (x̂))/ε) re-runs therefore we should
not spend more than t time units for one run. If we are not able to prove target to
be an upper bound within t time units, we set target higher and re-run for another
t time units. It is now more likely than before, that this time the first run succeeds
because the target is higher. At the end we either finished the whole problem as
described earlier (very unlikely) or we have proved some new upper bound and
increased the lower bound (very likely) or we improved neither the upper nor
the lower bounds (again very unlikely). The new approach, however, allows us
to somehow partition the maximum available time in a reasonable fashion in order
to achieve more than we had in the beginning.

5. The Benefit Illustrated with a Simple Example

The following example tries to outline the benefits of this target-oriented B&B
method. Though the example might appear artificial, this is necessary given that
in normal applications, the problem tree is too large to be used as an elucidatory
example.

For simplicity, avoiding lots of decimal points, we chose a discrete optimization
example, therefore ε = 1. The upper numbers inside the nodes are the upper
bounds of this sub problem and the lower numbers are the local solutions (lower
bounds) inside these problems.

Figure 3 shows the first run through the tree. The upper bound UBg for the main
problem is 100 and f (x̂) = 50 for some arbitrary chosen x̂ and thus target = 75.
The branching rule then generates the problems (1,1),(1,2) and (1,3) and their local
estimators (lower bounds) and upper bounds. A better optimizer x̂ is found in
problem (1,1) with f (x̂) = 53 but the upper bound of this problem is smaller
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Figure 3. First run through the tree. UBf = 100, target = 75.

Figure 4. Second run through the tree. UBf = 75, target = 65.

than target , therefore this problem is rejected this time (unlike the classical B&B
method) but remembered on a list. Problem (1,3)’s upper bound does not exceed
f (x̂) and is therefore discarded (like in the classical B&B method). Problem
(1,2)’s upper bound exceeds target and therefore new subproblems and their val-
ues are constructed. A new maximizer is found in (2,1) with f (x̂) = 55. Again the
upper bound is too small as it is in problem (2,2), therefore both are rejected this
time but remembered, whereas problem (2,3) is discarded permanently the same
as problem (1,3). At the end of this run (step 5) we have f (x̂) = 55 and a new
proven upper bound of 75. Additionally we know that only problems (1,1),(2,1)
and (2,2) should be considered for the next run (pl = rl). Our new target now is
65 = (75 + 55)/2.
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Figure 4 shows the second run through the tree. The new upper bound now is
75, which is not considered in the main node and node (1,2) because these nodes
are rendered and are no longer visited. They appear in the illustration simply for
better orientation. We start with problem (1,1) and see that this problem’s upper
bound is still too low. We reject and remember it. The same result is valid for node
(2,1). Node (2,2), however, constructs new subproblems, which are this time easy
enough to be rendered globally (i.e. upper and lower bounds coincide). We improve
the maximum to 64 in problem (3,2) and to 70 in problem (3,3), which resets the
target value to 72, 5 = (70 + 75)/2 (step 3b)and after that this run is finished. We
proved that 72,5 is an upper bound and found f (x̂) = 70 and know that we now
only have to look at problems (1,1) and (2,1). The third run now is trivial with no
computation and ends with the proof that the global optimum is 70.

In contrast to the classical B&B method not only problems (1,3) and (2,3) were
never expanded, but also problems (1,1) and (2,1). The classical method might got
stuck in the left-most branch starting with problem (1,1). Once again, this is an
artificial problem, constructed to illustrate the main points.

6. Experimental Results of Hard Problems

We made some experiments with the MCP in graph theory as already presented in
Section 2. The code is written in C on a PC (Pentium III, 450 Mhz with 256 Mbyte
RAM) and it is especially optimized to write the very large required lists in blocks
to disc (virtual memory). The classical B&B method and the target-oriented al-
gorithm were applied to some of these problems. Neither of both used a specific
selection rule (heuristic). It should be noticed that the best-bound-selection-rule
was not applicable for these problems, because of memory overflows (maximal al-
lowed memory was 650 Mbytes) as already discussed in Section 1. As a branching
rule the basic idea of Babel [1] is chosen. The upper bound is given through a valid
coloring of the graph which delivers an upper bound for the MCP [2, 17]. The
coloring algorithm is very simple and no attempt was made in optimizing it. Lower
bounds are extracted during the coloring process. The graphs are taken from the
DIMACS database [17] and are known to be difficult to solve. Because the graphs
are artificially constructed, in most cases the real maximum clique size is known
and printed in column “real maximum” in Table 1. The column “classical method”
shows the best found maximum using the classical branch and bound algorithm.
The next two columns show lower and upper bounds of the target-oriented B&B
algorithm and in the last two columns the time (in seconds) required for the clas-
sical method and the target-oriented B&B algorithm can be found. Here ∞ stand
for a kill of the algorithm after 6 hours. Graphs in bold face are problems, where
the target-oriented B&B method found not only the maximum but also proved that
the found maximum is the global one (UB = LB). It is interesting that problems
seems to be solved either “immediately” or “never”. This kind of behavior was also
found in [21] with a stochastic optimization problem using target-oriented B&B.
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Table 1. Performance of DIMACS Graphs using target-oriented B&B Algorithm

Real Classical Target Time

Graph Size Density max. method LB UB Class Target

brock200_1 200 0.745 21 21 21 21 697 349

brock200_2 200 0.496 12 12 12 12 1 1

brock200_3 200 0.605 15 13 15 15 ∞ 5

brock200_4 200 0.658 17 16 17 17 ∞ 18

brock400_1 400 0.748 27 20 25 33 ∞ ∞
brock400_2 400 0.749 29 23 24 41 ∞ ∞
brock400_3 400 0.748 31 23 24 42 ∞ ∞
brock400_4 400 0.749 33 23 24 41 ∞ ∞

p_hat500-1 500 0.253 9 9 9 9 3 2

p_hat500-2 500 0.505 36 36 36 41 ∞ ∞
p_hat500-3 500 0.752 � 49 47 48 68 ∞ ∞
p_hat700-1 700 0.249 11 9 11 11 ∞ 7

p_hat700-2 700 0.497 44 42 44 60 ∞ ∞
p_hat700-3 700 0.748 � 62 59 59 114 ∞ ∞

san200_0.7_1 200 0.700 30 17 30 30 ∞ 1

san200_0.7_2 200 0.700 18 14 18 18 ∞ 6

san200_0.9_1 200 0.900 70 48 70 70 ∞ 23

san200_0.9_2 200 0.900 60 40 60 60 ∞ 328

san200_0.9_3 200 0.900 44 35 41 46 ∞ ∞
san400_0.5_1 400 0.500 13 12 13 13 ∞ 4

san400_0.7_1 400 0.700 40 21 40 40 ∞ 122

san400_0.7_2 400 0.700 30 17 30 30 ∞ 566

san400_0.7_3 400 0.700 22 15 17 25 ∞ ∞
san400_0.9_1 400 0.900 100 56 99 108 ∞ ∞

In our opinion this is simply the fact that some NP-complete problems are easier
but there exist for each problem class a threshold beyond that the problems become
very fast intractable for all algorithms (unless P = NP ).

It can be noted that especially for the Sanchis graph family, the target-oriented
B&B approach was very successful. This is because in this family there are many
local maximizers (maximal cliques) with cardinalities at about half the real max-
imum clique. The target-oriented B&B approach forces the computation to “jump”
over these many inefficient small local maxima as discussed in Section 4. In some
cases the target-oriented approach was not able to render the problems though it
did succeed in approximating them nicely from above and below.
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7. Conclusions

We may conclude that the target-oriented B&B method is more efficient than
the classical one. It is independent of the problem, and improves upper and lower
bounds better and faster than the classical method and it is not much more diffi-
cult to implement. The drawback is the remembering of the rejected nodes, which
consumes memory resources.

In principle, target does not have to be the arithmetic mean between upper and
lower bound. Any better estimate depending on the problem could do a better job.
Nevertheless target must be monotonic increasing in order to preserve consistency
during re-runs. The upper and lower bounds can be thought of as hard bounds, and
the target as an estimation of the global optimum inside the problem. If the estimate
is close to the real optimum, the algorithm can prove much more quickly that the
optimum has been found.
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